

UNIVERSIDADE PRESBITERIANA MACKENZIE

Pró-Reitoria de Pesquisa e Pós-Graduação Coordenadoria Geral de Pós-Graduação Stricto Sensu

Course Syllabus

Department/Faculty			
School of Engineering			
Graduate Program			
Materials Engineering and Nanotechnology			
<u>D</u> egree	_	<u>_</u>	
Academic Master's	□ Doctorate (PhD)	☐ Professional Master's	
Course Name			
Nanostructured Devices and Nanosensors			
Professor			
Office hours			
48			

Course Overview

Chemical, photonic and optoelectronic devices based on nanostructures are presented, as well as the concepts and fundamentals necessary to understand how they work.

Topics outline

- Introduction to Sensors
- Types of nanosensors
- Nanostructures x Sensors
- Application of nanosensors
- Types of nanostructures.
- Physical chemistry of solid surfaces.
- Manufacturing on a nanometric scale.
- Characterization of nanostructures.
- Properties of nanostructures
- Examples of applications of nanostructures.
- Fundamentals and applications of optical and electrochemical nanosensors (potentiometric, voltammetric, conductometric and coulometric).

Letter Grade Assignment

Grade A (Excellent) - Grade points between 9 and 10

Grade B (Good) - Grade points between 8 and 8.9

Grade C (Satisfactory) - Grade points between 7 and 7.9

Grade D (Unsatisfactory) - Grade points between 0 and 6.9

Texts, Materials, and supplies

GAPONENKO, S. V. Introduction to Nanophotonics. Cambridge Univ. Press. 2010.

GRÜNDLER.P. Chemical Sensors: An Introduction for Scientists and Engineers. 2nd ed. Springer. 2007.

MAIER, S. Plasmonics: Fundamentals and applications. Springer. 2007.

KHANNA, V. K., Nanosensors: Physical, Chemical, and Biological. CRC Press, 2012.

LIM, TEIK-CHENG, Nanosensors, Theory and Applications in Industry, Healthcare and

Defense. CRC Press, 2011

Artigos da literatura científica