

UNIVERSIDADE PRESBITERIANA MACKENZIE

Pró-Reitoria de Pesquisa e Pós-Graduação Coordenadoria Geral de Pós-Graduação Stricto Sensu

Course Syllabus

Department/Faculty		
School of Engineering		
Graduate Program		
Materials Engineering and Nanotechnology		
Degree		
Academic Master's	□ Doctorate (PhD)	☐ Professional Master's
_		_
Course Name		
Solid state thermodynamics		
Professor(s)		
Prof. Leandro Seixas		
Office hours		
48		
Course Overview		
Principles of solid state chemistry and physics. Solid state reactions. Free energy of binary and ternary		
systems. Equilibrium of multicomponent heterogeneous systems. Thermodynamics of defects in crystals.		
Applied thermodynamics and solid-state electrochemistry.		
Applied thermodynamics and solid-state electrochemistry.		

Topics outline

Concepts and definitions, Function of states, Process variables, Energy, Reversible and irreversible process. Laws of thermodynamics. Thermodynamic variables and relations. Enthalpy. Entropy. Gibbs free energy. Maxwell relations. Useful thermodynamic relations. Heat capacity. Clausius-Clapeyron equation. Applications in solids and liquids. Solutions, definitions, variables for solution compositions, definitions for partial molar properties, chemical potentials, molar quantities, relations between molar properties and total properties, graphical interpretations, mixing process, ideal solutions, regular solutions. Phase diagrams, conditions for the equilibrium, eutectic phase diagram, other phase diagrams. Chemical equilibrium, gasogenous equilibrium, solid-vapor equilibrium, equilibrium constants with the temperature. Atomic diffusion, Fick's laws, mechanism of diffusion. Nucleation, nucleation in pure solids, homogeneous nucleation, solid nucleation in liquids, driving force in nucleation, nucleation ratios. Crystal interfaces and microstructures, interface free energy, solid-vapor interface, grain boundary, solid interface, elastic energy. Growth, growth of pure substances, solidifications of alloys, transformation with diffusion in solids.

Letter Grade Assignment

Grade A (Excellent) - Grade points between 9 and 10

Grade B (Good) - Grade points between 8 and 8.9

Grade C (Satisfactory) - Grade points between 7 and 7.9

Grade D (Unsatisfactory) - Grade points between 0 and 6.9

Texts, Materials, and supplies

DEVEREUX, O. F., Topics in Metallurgical Thermodynamics, John Wiley & Sons Inc., 1983 DE HOFF, R. T., Thermodynamics in Materials Science, Mc Graw-Hill, New York, 1993 SWALIN, R. A., Thermodynamics of Solids, John Wiley & Sons Inc. New York, 1962. HOGE, C. E., Thermodynamic Aspects of Solid State Engineering, Springer US, 1975.