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Abstract

Surrogate models are frequently used to replace costly engineering simulations. A single sur-

rogate is frequently chosen based on previous experience or by fitting multiple surrogates and

selecting one based on mean cross-validation errors. A novel stacking strategy will be pre-

sented in this paper. This new strategy results from reinterpreting the model selection process

based on the generalization error. For the first time, this problem is proposed to be translated

into a well-studied financial problem: portfolio management and optimization. In short, it is

demonstrated that the individual residues calculated by leave-one-out procedures are samples

from a given random variable �i, whose second non-central moment is the i-th model’s general-

ization error. Thus, a stacking methodology based solely on evaluating the behavior of the lin-

ear combination of the random variables �i is proposed. At first, several surrogate models are

calibrated. The Directed Bubble Hierarchical Tree (DBHT) clustering algorithm is then used to

determine which models are worth stacking. The stacking weights can be calculated using any

financial approach to the portfolio optimization problem. This alternative understanding of the

problem enables practitioners to use established financial methodologies to calculate the mod-

els’ weights, significantly improving the ensemble of models’ out-of-sample performance. A

study case is carried out to demonstrate the applicability of the new methodology. Overall, a

total of 124 models were trained using a specific dataset: 40 Machine Learning models and 84

Polynomial Chaos Expansion models (which considered 3 types of base random variables, 7

least square algorithms for fitting the up to fourth order expansion’s coefficients). Among

those, 99 models could be fitted without convergence and other numerical issues. The DBHT

algorithm with Pearson correlation distance and generalization error similarity was able to

select a subgroup of 23 models from the 99 fitted ones, implying a reduction of about 77% in

the total number of models, representing a good filtering scheme which still preserves diversity.

Finally, it has been demonstrated that the weights obtained by building a Hierarchical Risk Par-

ity (HPR) portfolio perform better for various input random variables, indicating better out-of-

sample performance. In this way, an economic stacking strategy has demonstrated its worth in

improving the out-of-sample capabilities of stacked models, which illustrates how the new

understanding of model stacking methodologies may be useful.
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Introduction

In general, most scientific applications are related to assessing the relationship between differ-

ent random entities subjected to a given performance function, φ. Normally, neither the exact

shape of φ nor the joint probability density function (pdf) of the random variables are known,

requiring scientists to consider numerical approximations to integration problems and statisti-

cal estimation techniques for the joint pdf. On the other hand, such methods require the func-

tions involved to be massively evaluated, which comes at a high computational cost.

Some methods used to reduce the number of calls to the performance function have been

developed. The most common and relevant ones are those based on surrogate modeling. Sur-

rogate models simulate the input-output relationship established by the performance function.

They comprise simplified mathematical models that are much less expensive to evaluate.

Among surrogate models, Polynomial Response Surfaces (PRS), Polynomial Chaos Expansion

(PCE), Artificial Neural Networks (ANN) and Support Vector Regression (SVR) have been

used in the framework of reliability analysis, see [1–8] and references therein. Because of its

usual interpolating nature and the straightforward estimation of the prediction’s local vari-

ance, kriging has also been considered for solving this type of problems. [9–11].

Even though surrogate modeling-based approaches have demonstrated their ability to

address complex problems, some tuning issues may impair their efficiency. As a result, select-

ing the best surrogate model for a given problem remains a difficult task for users [12]. Surro-

gates are fitted to function values at a set number of points, referred to as the design of

experiments (DoE). The surrogates’ accuracy is then assessed across the entire domain.

Because the fit quality is determined by the data points, choosing models that only minimize a

given error metric may result in different results from DoE to DoE, [13].

There are various surrogate models, each based on mathematical assumptions and prior

parameter choices. However, no type or tuning is optimal in all circumstances. In some cases,

increasing the information in the training set can lead to better models by adaptively increas-

ing the number of sampled points. Active learning methods exist in these cases (for example,

by combining Kriging and Monte Carlo Simulation, namely AK-MCS and similar approaches

[14, 15]).

On the other hand, in many cases, acquiring new samples of the joint distribution of the

input-output random variables is impossible. Some examples are those when the samples

come from running costly numerical simulations, or destructive experiments, such as crash

simulations which may take 36 h to 160 h to compute a single simulation run [16, 17]. Thus, it

is important to enhance the predictive capabilities of the calibrated models without any new

training samples.

Aside from acting as surrogates for true models, it is known that combining surrogates’ pre-

dictions can be an interesting approach to increasing prediction accuracy when compared to

individual models [18–21]. In that regard, individual surrogate models combined in the form

of a weighted average model can sometimes enhance the accuracy of predictions [13]. This

strategy may include surrogates that belong to different analytical classes (different machine

learning algorithms, for example), such that this diverse and large set can increase the chances

of avoiding poorly fitted surrogates and a DoE dependence on the performance of individual

surrogates. This approach is known as the Ensemble of Surrogate Models (ESM).

Literature reveals that ESM approaches can considerably increase the modeling accuracy,

as was in the case of wind speed modeling [22]. In the latter work, the authors proposed a

novel framework based on the stacking ensemble machine learning method. They considered

eleven base machine learning algorithms in several categories (neuron based categories, kernel

based, tree based, gradient boosted, least squares boost, curve based, regression based and
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hybrid algorithm based) as a first step to then apply a least squares boost using the output of

the base algorithms.

In another paper, other authors [23] statistically analyze the generalization error of ensem-

ble learning to assess base-learners’ diversity. In their model, they first perform an input fea-

ture selection procedure based on various tree-based embedded methods. The candidate

models to be stacked (in their case, passed on to a second layer meta-learner) are then selected

based on diversity regularization and individual learning capability. Those authors also apply

information theory and standard hierarchical clustering algorithms to quantitatively assess the

dissimilarity degree among candidate models by analyzing their error distributions. Their

stacking ensemble framework employed a two layer-meta learning leave-one-out procedure.

In general, the existing ESM strategies can be split into two groups, namely local ESM and

global EM. The latter has unchanged weight factors in the design space, unlike local ESMs. In

the present paper, global ESMs will be studied.

In short, a novel stacking strategy shall be presented in the present paper. Such a new strat-

egy comes from reinterpreting the model selection procedure based on the generalization

error. For the first time, it is shown that this problem can be translated into a well-studied

financial problem: portfolio management and optimization. Such an alternative understanding

of the problem allows practitioners to take advantage of established financial methodologies,

which can considerably increase the out-of-sample performance of the ensemble of models. A

study case is carried out to show the new methodology’s applicability. In the next subsections,

a few important aspects needed to subsidize the proposition of the new stacking strategy are

explored.

The problem of learning from examples

Let X and Y be two arbitrary sets such that X will be a subset of a k-dimensional Euclidean

space and Y a subset of the real line. Then, let x and y be random variables representing the

vector of independent variables and the response variable, respectively. Thus, the independent

variable will be a k-dimensional vector and the response a real number, since x and y range

over the generic elements of X and Y. It is assumed that a probability distribution P(x, y) exists

and is defined on X × Y. Despite being unknown, the joint probability distribution P(x, y) can

be written as [24]:

Pðx; yÞ ¼ PðxÞPðyjxÞ ð1Þ

where P(y|x) is the conditional probability (if it exists) of the response y given the independent

variable x, and P(x) is the marginal probability of the independent variable [24].

The data set Dl, created by sampling l times the set X × Y according to their joint probability

distribution P(x, y), typically provides examples of this probabilistic relationship. Then:

Dl ¼ fðxi; yiÞ 2 X � Ygli¼1
ð2Þ

When an estimate of the expected value of y is required for an instance of x that does not

appear in the data set Dl, a prediction problem is created. Let an estimator be any function

f: X! Y that is a part of the functional space F . Any estimator will inevitably make some

errors because the independent variable x does not have to be the only factor that influences

the response y. We will focus on the problem of determining the best estimator given the

knowledge of the data set Dl, which will be defined as the problem of learning from exam-

ples [24].

Suppose one samples X × Y according to P(x, y), obtaining the pair (x, y). Let ℓ(f(x), y)

denote the error made when f(x) is predicted instead of y (ℓ is the loss function) [12].
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Generally, the expected risk of f w.r.t. loss ℓ is defined as the expected value of the loss ran-

dom variable w.r.t. the space X × Y. Mathematically:

Rriskðf Þ ¼ EX�Y ½‘ðf ðxÞ; yÞ� ¼
Z

X�Y
Pðx; yÞ‘ðf ðxÞ; yÞdxdy ð3Þ

where EZ½�� denotes the expectation w.r.t. Z. If the loss is chosen as the squared difference, it

can be shown that the optimal solution which minimizes Rrisk(f) is given when [25]:

f ðxÞ ¼ f0ðxÞ ¼
Z

Y
yPðyjxÞdy ð4Þ

Other loss functions would result in different optimal solutions, but such choices do not

impact the main rationale of the present paper. This comes from the fact that, for whatever

loss function is chosen, it would be always possible to assess the quality of the optimal solution

by studying the risk defined in Eq (3).

In general, it can be stated that, regardless of the loss chosen, an optimal function will exist.

This function, hereby denoted as f0(x), belongs to F and will be approximated by another

function, g(x), which belongs to a generic subset of F whose elements are parametrized by

some parameters proportional to a given integer n, hereby called Gn. Moreover, it is assumed

that the sets Gn form a nested family, that is G1 � G2 � G3 � . . . Gn. For example, Gn could be

the set of polynomials in one variable of degree n − 1 [24].

We could determine which component of Gn is best for accurately modeling f0 by taking

potential functions and using the expected risk as a criterion. Any prior knowledge of the

unknown probability distribution P(x, y) should be considered when defining Gn.

Considering the example set Dl, the problem of learning from examples can now be refor-

mulated as the problem of reconstructing the regression function f0 using such a set. In gen-

eral, the target function f0 can be said to belong to a general class of functions called F . Noisy

data is obtained as (x, y) where x has the distribution P(x) and for each x, y is a random vari-

able with mean f0(x) and distribution P(y|x). If one assumes that the noise is additive, one

could write:

y ¼ f0ðxÞ þ Z ð5Þ

where η is zero-mean with distribution P(y|x).

If the expected risk in Eq (3) were known, the learning problem would be straightforward

to solve, as the regression function could be computed by finding the risk’s minimum in Gn.

This is not true in general, since P(x, y) and Rrisk(f) are unknown. The data set Dl, which con-

sists of l independent random samples of X × Y drawn using P(x, y), is the only source of infor-

mation. The empirical risk Remp(f) can be used to approximate the expected risk in Eq (3)

using this data set Dl:

Rempðf Þ ¼
1

l

Xl

i¼1

‘ðf ðxiÞ; yiÞ: ð6Þ

One is concerned with reducing the expected risk Rrisk(g) over the set Gn. Given that the

candidate function has a finite number of parameters, the optimal strategy would be to mini-

mize the loss function over the set Gn, which would produce the estimator gn as:

gn ¼ arg inf
g2Gn

RriskðgÞ ð7Þ
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However, because the data are finite and the functional space Gn is limited (by, for example,

taking into account a set of parametrizations of continuous functions), the only option is to

reduce the empirical risk Remp(g) and obtain the function ĝ n;l as the final estimate [24]. By

using the squared difference as the metric to measure the distance between ĝ n;l and the ideal

solution f0, the generalization error Gerror can be defined as follows:

Gerror ¼ EX½ðf0 � ĝ n;lÞ
2
� ¼

Z

X
PðxÞðf0 � ĝ n;lÞ

2dx ð8Þ

The generalization error is primarily caused by two factors: The regression function f0 2 F ,

which has an infinite number of dimensions, is being approximated by the parametrized func-

tion gn 2 Gn, which has a finite number of parameters. The quantity E[(f0−gn)2], which is the

squared distance between the best function in Gn and the ideal regression function, is used to

measure this error, which is known as the approximation error. It is important to note that the

approximation error depends only on the class Gn’s approximating power and not on the data

set Dl.

Another source of error stems from the fact that one minimizes the empirical risk Remp

rather than the expected risk Rrisk to obtain ĝ n;l. Thus, the estimation error appears and is cal-

culated as |Remp − Rrisk|. Further details can be seen in [24].

It is possible to think of the generalization error as having both a random component, rep-

resented by the estimation error and a deterministic component, represented by the approxi-

mation error:

f0ðxÞ ¼ ĝ n;lðxÞ þ �; ð9Þ

such that E[�2] = Gerror and E[�] = μ.

Combining Eqs (5) and (9):

y ¼ ĝ n;lðxÞ þ �þ Z ð10Þ

Estimating the generalization error by leave-one-out cross validation. Leave-one-out

cross-validation is a variant of cross-validation in which the number of folds is equal to the

number of instances in the dataset [26]. The candidate model’s prediction error is calculated

for each value in the observed dataset using all other values as a training set and the chosen

value as a single-item test set. The leave-one-out error Rloo, which is meant to be an “almost”

unbiased (in the sense of [27]) estimate of the generalization error Gerror [28], was introduced

in various contexts in the late 1960s, including those discussed in [27, 29–31]. For the case of

the empirical risk presented in Eq (6), the leave-one-out risk estimator (LOOE) can be defined

as:

Rlooðf Þ ¼
1

l

Xl

i¼1

‘ðf iðxiÞ; yiÞ: ð11Þ

where f i(xi) denotes the model f calibrated on the training set obtained by removing the point

(xi, yi) from Dl, an then evaluated at xi.

The asymptotic capabilities of LOOE as a proxy for the generalization error have been stud-

ied previously [32], and it has been shown both theoretically and empirically that the leave-

one-out error, whenever the learning algorithms are stable in the sense of [28, 33], is a proper

proxy. The present paper considers the LOOE a true proxy for generalization error estimates.
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For a squared loss, the generalization error for a given model i can be expressed as:

Gerror;i ¼
1

l

Xl

i¼1

ðyk � ĝ n;l;i;kðxkÞÞ
2

ð12Þ

where yk is the true response at a given point xk and ĝ n;l;i;kðxkÞ is the value predicted at xk by

using the model approximated by the parameterized function gn and calibrated from all the

DoE points in Dl except the data pair (xk, yk).
The previous literature covers the basic concepts of the learning process from a statistical

point of view. In the next subsections, the idea of combining several candidate functions (sur-

rogate models) to build the parameterized function gn shall be discussed.

Surrogate models

Surrogate models can improve effectiveness and lower the computational costs of a problem

or design process. Various surrogate-modeling techniques have been applied to uncertainty

analysis, sensitivity analysis, and optimization to create a statistical model of the simulation

model. This allows the repeated simulation “runs” to be completed using statistical surrogates

in seconds. [34].

As will be presented in the Materials and Methods section, this paper considers various

machine learning techniques, assessing their potential use as surrogates. Kriging is a popular

form of Gaussian process regression, which we also included in our set of possible surrogate

algorithms. Besides the Machine Learning techniques, Polynomial Chaos Expansions will also

be considered.

Polynomial Chaos Expansions—PCE. Let an input-output model be represented by a

function y = M(x), where x 2 Rn, y 2 Rm, and n is the number of input quantities and m the

number of outputs. For simplicity, the m = 1 case will be considered in the following descrip-

tion. Both x and y can be described as random variables X = (X1, X2, X3, . . ., Xn) and Y, respec-

tively, due to the uncertainties in the input variables and their propagation to the output [35–

37]. For a specific value of x, a deterministic algorithm normally computes the corresponding

response y. The joint pdf of the random vector X is denoted by fX. Assuming that the input

random variables Xi are independent, then fX is a multiplication of the marginal probabilities,

fXðxÞ ¼
Qn

i¼1
fXi
ðxiÞ. A polynomial Chaos Expansion (PCE) approximates the response Y as a

linear combination of orthonormal polynomials [2].

In a full PCE, the number of expansion factors NP depends on the polynomial order p
and the number of random input parameters n, being given by NP ¼ ðnþpÞ!

n!p!
. Also, in the con-

text of multivariate basis of polynomials, they can be constructed as tensor products of uni-

variate orthonormal polynomials which are closely related to the pdfs fXi
ðxiÞ [36]. For

example, in the case of uniform distributions, Legendre polynomials are the ideal basis

function. For Normal random variables, on the other hand, Hermite polynomials are of

interest [36].

After defining the univariate polynomial basis, regression analysis can compute the PCE

coefficients in a non-intrusive and cost-effective manner. The regularized least squares optimi-

zation involved in the regression procedure can be solve by different methods, each of which

will assume extra penalizations or constraints to the optimization problem. Naturally, different

choices will provide different polynomial coefficients and, therefore, different surrogate

models.
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Stacking strategies

In work by Wolpert [38], the general idea of machine learning stacking was discussed: for a

given set of predictors, instead of selecting a single one from this set (in a winner-takes-all fash-

ion), a more accurate predictor can be obtained by combining all (or most of) the predictors in

the set.

Breiman [39], on the other hand, discussed the concepts behind stacking regressions, which

is a method for forming linear combinations of different predictors to give improved predic-

tion accuracy. Thus, suppose we have m different candidate models ĝ n;l;i, then, in general, the

stacked model ĝ stkðxÞ can be obtained as:

ĝ stkðxÞ ¼
Xm

i¼1

wiĝ n;l;iðxÞ ð13Þ

where wi are real values representing weights. The same rationale discussed in [38, 39] had

been previously proposed by Stone [31] and called a “modelmix”.

Breiman [39] also discusses that a stacking regression strategy as described in Eq (13) has

two main issues. The first is that since each candidate model was constructed using the train-

ing data, obtaining wi by minimizing the squared error over this same training data will be

prone to overfitting, which implies that generalization will be poor.

The leave-one-out cross-validation data can be used to diminish this issue, as noted in both

[38, 39]. On the other hand, the second issue is more challenging. Since all candidate models

attempt to predict the same phenomenon, they are typically highly correlated. The wi pro-

duced will be extremely sensitive to even the smallest changes in the data if a straightforward

least-squares reduction of the errors is performed. Generalization will again be inadequate.

According to Breiman [39], using ridge regression would be preferable to estimate the regres-

sion coefficients of strongly correlated variables. More discussion on these two issues can be

found in [40].

Since the proposed methodology is based on an economic portfolio optimization approach,

general remarks on this topic are presented in the next section.

Portfolio optimization: A financial stacking strategy

The most frequent financial issue is probably portfolio creation. Investment managers must

create portfolios considering their opinions and projections of risks and returns. Markowitz

studied this topic and indicated that different levels of risk correspond to distinct optimal port-

folios in terms of risk-adjusted returns [41].

Allocating all the investments to assets with the highest predicted returns is rarely the best

course of action. Instead, to create a diversified portfolio, one should consider the correlations

across various investments [42]. In this regard, several works have explored portfolio optimiza-

tion procedures, especially using machine learning techniques. A complete review can be

found in [43].

Modern Portfolio Theory—MPT

The main statistical basis for Markowitz’s proposition is that whenever assets’ returns have

negative Covariance Cov, the Variance, Var of their linear combination is less than the

weighted sum of their Variances. Mathematically:

VarðaX þ bYÞ ¼ a2 VarðXÞ þ b2 VarðYÞ þ 2ab CovðX;YÞ ð14Þ
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This indicates that portfolios with less risk can be obtained for a fixed target portfolio return

by properly selecting the assets to combine. Despite Markowitz’s theory’s simplicity and appar-

ent robustness, some practical issues show up when considering portfolios that are only built

by gathering assets based on minimizing portfolio variance (given specific returns). The opti-

mization routine will generate very different portfolios if the expected returns deviate slightly

from the forecasted future values [44]. While disregarding the forecasting process for the

returns improves things, it does not resolve the instability problems. The rationale is that posi-

tive-definite covariance matrices must be inverted to use quadratic programming methods (all

eigenvalues must be positive). When the covariance matrix is numerically ill-conditioned, i.e.,

has a high condition number, this inversion is vulnerable to significant mistakes [45]. As a

result, different solutions have been studied to the portfolio construction problem, a few of

which are described in the next subsections.

Hierarchical portfolio construction

The Hierarchical Risk Parity (HPR) was proposed in [42] to address three major concerns of

quadratic optimizers, in general, and Markowitz’s critical line algorithm (CLA), in particular:

instability, concentration, and underperformance. Based on the data in the covariance matrix,

HPR uses contemporary mathematics (graph theory and machine-learning techniques) to cre-

ate a diversified portfolio. Contrary to quadratic optimizers, HPR does not need the covariance

matrix to be invertible and Monte Carlo studies demonstrate that HPR produces lower out-of-

sample variance than CLA. Compared to conventional risk parity methodologies, HPR gener-

ates less risky portfolios out-of-sample.

The HPR justification is based on the observation that the covariance matrix of the portfolio’s

asset returns may be visualized as a full graph. Conversely, this method suggests that simpler and

more relevant hierarchies are concealed within such comprehensive graphs, which oversimplifies

hierarchies. Then, HPR applies a hierarchical clustering technique to the covariance matrix as

part of an unsupervised learning strategy. The HPR methodology then indicates recursively re-

allocating risk over the assets after identifying asset clusters. An inverse-variance portfolio is con-

structed when the hierarchy is determined, and the cluster variances are computed [42].

The inverse-variance portfolio is the one whose weights minimize the portfolio variance

whenever the covariance matrix is diagonal. Thus, in this case, each asset is weighted in inverse

proportion to its returns variance [42]. Pure inverse-variance approaches have already been

explored as a stacking strategy for machine learning in [46].

Robust optimization

Some interesting approaches try to account for the fact that the returns observed are samples

of the random variables involved and only present a glimpse of their real behavior. Therefore,

the values obtained cannot be taken as deterministic and must be treated in an uncertain

framework. The Python package RSome [47, 48] provides a full framework for implementing

these approaches.

The present paper considers the portfolio construction problem with a robust optimization

approach introduced in [49]. The robust model is presented as:

maxmin
z2Z

Xn

i¼1

ðpi þ diziÞxi

s:t:
Xn

i¼1

xi ¼ 1

s:t: xi � 0; 8i

ð15Þ
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where the affine term pi + δizi represents the random stock return, and the random variable Z
(whose samples are zi) is between [−1, 1], so the stock return has an arbitrary distribution in

the interval [pi − δi, pi + δi]. For simplicity, it is assumed in the present paper that

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð∊iÞ

p
=2. The uncertainty set Z is given as:

Z ¼ fz : jjzjj
1
� 1; jjzjj

1
� Gg ð16Þ

and Γ is the budget of uncertainty parameter.

Often, financial assets can be clustered prior to their combination in a portfolio. This can

enforce diversity of assets, which is of utmost interest to investors. Thus, the next subsection

explores this concept.

Clustering returns of financial assets

The clustering of financial assets’ returns can be done using hypothesis testing frameworks, or

may encompass hierarchical concepts.

Nonparametric hypothesis tests. A hypothesis test for equality of distribution can be

used as a first step in determining how different random variables are when each sample is

compared. Generally speaking, these tests will create a statistical framework to examine the

degree to which two or more samples differ from two or more random variables.

Let X1 and X2 be the continuous random variables underlying two populations of interest,

and F1 and F2 be their respective distribution functions. The general system of hypotheses

when one compares two populations is:

H0 : X1
d
¼ X2 against H1 : X1

d
6¼ X2

ð17Þ

where X1
d
¼ X2 means that F1ðtÞ ¼ F2ðtÞ8t 2 R and X1

d
6¼ X2 means that 9A � R : F1ðtÞ 6¼

F2ðtÞ; t 2 A with Pr(A)> 0.

Because they do not establish any assumptions about the distribution of each random vari-

able being compared, nonparametric tests are especially appealing when the types of random

variables studied are unknown. Two of theses tests are explored in detail.

• Kolmogorov-Smirnov Test

The Kolmogorov–Smirnov test may test whether two underlying one-dimensional proba-

bility distributions, with densities F1(x) and F2(x), respectively, differ. In this case, the Kolmo-

gorov–Smirnov statistic KS is the supremum of the absolute difference between densities [50].

One drawback of this test is that it may be ineffective for the equality of distribution assess-

ment. Some claim that the Cucconi test can be more effective for that [51].

• Cucconi test

For the Cucconi test:

FiðtÞ ¼ G
t � mi

si

� �

; i ¼ 1; 2 ð18Þ

where G(�) is the distribution function for a continuous variable with location 0 and scale 1, μi
is the location of population i, and σi is its scale. Let observations Xi1; . . . ;X1ni

be random sam-

ples from population i. For the location-scale problem, Cucconi [52] proposed a rank test

based on:

C ¼
U2 þ V2 � 2rUV

2ð1 � r2Þ
ð19Þ
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where

U ¼
6
Pn1

i¼1
W2

1i � n1ðnþ 1Þð2nþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðnþ 1Þð2nþ 1Þð8nþ 11Þ=5

p ð20Þ

and

V ¼
6
Pn1

i¼1
ðnþ 1 � W1iÞ

2
� n1ðnþ 1Þð2nþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðnþ 1Þð2nþ 1Þð8nþ 11Þ=5

p ð21Þ

n = n1 + n2, Wji denotes the rank of Xji in the pooled sample X ¼
ðX11; . . . ;X1n1

;X21; . . . ;X2n2
Þ ¼ ðX1; . . . ;Xn1

;Xn1þ1; . . . ;XnÞ and ρ = 2(n2 − 4)/((2n + 1)(8n
+ 11)) − 1. Under H0, E½U� ¼ E½V� ¼ 0 and Var(U) = VAR(V) = 1 [51]. The p-values associ-

ated with such tests can be calculated by bootstrap techniques [51].

Directed Bubble Hierarchical Tree clustering. In a completely unsupervised and deter-

ministic manner, hierarchical clustering algorithms enable discovery of relationships and

structures within datasets. The Directed Bubble Hierarchical Tree (DBHT) uses the topological

property of the PMFG (Planar Maximally Filtered Graph) to find the clustering [53].

The PMFG is a generalization of the Minimum Spanning Tree (MST) included in the

PMFG as a subgraph. It is created using the same steps as the MST, except that the weaker pla-

narity condition is used instead of the non-loop condition (i.e., each added link must not cut a

pre-existent link). The PMFG can retain more links and information than the MST because of

this less severe topological constraint. It can be demonstrated, in particular, that each PMFG

contains precisely 3(N − 2) links.

The DBHT uses the topological structure of the PMFG to identify a clustering partition for

each node in it [53]. The traditional agglomerative clustering process is then used to obtain an

entire hierarchical structure (dendrogram) between and within clusters.

Normally linkage algorithms analyze the sorted list of distances Di,j between nodes i and j
and construct the dendrogram by compiling subsets of candidate models with the smallest dis-

tances; the clustering is then obtained from the dendrogram after pre-selecting the “number of

clusters” desired. Instead, the DBHT reverses this process: first, the clusters are identified

using topological analysis of the planar graph, and then the hierarchy is built between and

within the clusters. Therefore, the distinction between the traditional agglomerative clustering

process and DBHT involves the type of information used and the methodology.

In a recent study [54], researchers quantified the amount of information on stock return

correlations filtered by various hierarchical clustering methods. Their findings demonstrate

that the DBHT can perform better than other methods by retrieving more data with fewer

clusters. Additionally, they demonstrate how, depending on the clustering method, the eco-

nomic information is hidden at various levels of the hierarchical structures.

The DBHT algorithm considers a dissimilarity (distance) and a similarity matrix. In

essence, both matrices are required because the PMFG is a weighted graph, and weights are

typically similarity measures for edges (a larger weight of an edge corresponds to a stronger

similarity between the connected nodes). The edges are also associated with a distance or,

more generally, a non-negative dissimilarity measure [53]. Therefore, it is important to present

some candidates for these matrices.

• Pearson correlation distance
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Considering the works of [53, 54], an interesting distance metric can be defined in terms of

Pearson’s correlation coefficients ρij between pairs of assets. This way, a m ×m distance matrix,

whose elements are Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � rijÞ=2

q
, can be defined.

• Kendall’s τ correlation distance

Similarly to the Pearson correlation distance, it is possible to consider Kendall’s τ rank cor-

relation to build a distance metric τij between pairs of assets. Literature reveals that this correla-

tion metric better captures co-movements, while compared to Pearson correlation, especially

in the realm of clustering financial time series [55].This way, a m ×m distance matrix, whose

elements are Dt;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � tijÞ=2

q
, can be defined.

• Spearman’s ρ correlation distance

Literature also indicates that Spearman’s ρ, ρS, has a good performance when used to cluster

financial assets’ returns [55] and, therefore, can be used to build a distance metric ρs,ij between

pairs of assets. This way, a m ×m distance matrix, whose elements are Dr;ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � rs;ijÞ=2

q
,

can be defined.

• Generalization error distance

It is possible to define the distance between two algorithms i and j by computing the abso-

lute difference between the generalization error of each one. Thus, let Γ(i, j) denote this differ-

ence, then:

Gði; jÞ ¼ jGerror;i � Gerror;jj ð22Þ

• Relative Kullback–Leibler divergence as a distance

Consider the problem of comparing two approximate distributions, V and S, using a third

reference pdf, P. Using the KL divergence to calculate the absolute value of the difference

between the KL divergences of both V and S concerning the same function P is possible. Thus

[56]:

DPðVjjSÞ ¼ jDðPjjVÞ � DðPjjSÞj ð23Þ

where D(P||V) is the KL divergence between P and V, defined as [57]:

DðPjjVÞ ¼
Z 1

� 1

pðxÞlog
pðxÞ
vðxÞ

� �

dx ð24Þ

in which p(x) and v(x) are the densities of P and V, respectively.

Thus, from Eqs (23) and (24):

DPðVjjSÞ ¼
�
�
�
�

Z 1

� 1

pðxÞlog
pðxÞ
vðxÞ

� �

dx �
Z 1

� 1

pðxÞlog
pðxÞ
sðxÞ

� �

dx
�
�
�
� ð25Þ

¼

�
�
�
�

Z 1

� 1

pðxÞlog
sðxÞ
vðxÞ

� �

dx
�
�
�
� ð26Þ

An interesting choice for the reference pdf is the Dirac delta pseudo-distribution. Such

pseudo-distribution can be modeled as the limit of a Normal random variable with mean and
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variance tending to zero. Thus, in the case where the reference random variable is a Dirac

delta centered at μref, it can be seen that the generalized metric in Eq (25) becomes:

Dd;mref
ðVjjSÞ ¼

�
�
�
�

Z 1

� 1

dðx � mref Þlog
sðxÞ
vðxÞ

� �

dx
�
�
�
� ¼

�
�
�
�log

sðmref Þ

vðmref Þ

 !�
�
�
� ð27Þ

Finally, for a zero-centered Dirac delta pseudo-distribution, it can be seen that the distance

metric adopted could be:

Dd;0ðVjjSÞ ¼
�
�
�
�log

sð0Þ
vð0Þ

� ��
�
�
� ð28Þ

Eq (28) indicates that calculating the distance metric Dδ,0(V||S) reduces to the calculation of

the density ratio between both distributions at the origin. The estimated density ratio function

can be used in many applications, such as the inlier-based outlier detection [58] and covariate

shift adaptation [59]. Other useful applications for density ratio estimation were summarized

in [60].

Some python implementations of the RuLSIF (Relative unconstrained Least-Squares

Importance Fitting) method can estimate the alpha-relative density ratio by minimizing the

squared loss between the true and estimated alpha-relative ratios. This method is detailed in

[58, 61].

Literature indicates that the density ratio problem can be approached by multidimensional

densities via k-nearest-neighbor distances [62], by a probabilistic classification [63] or even an

infinitesimal classification [64]. A general discussion can be found in [63].

• Generalization error similarity

For this case, it is possible to express the similarity of two datasets based on their Generali-

zation error distance defined in Eq (22) as SGerror ;i;j
¼ exp � Gði;jÞ

maxi;jGði;jÞ

� �
. Now that a brief review

of the literature has been presented, the Material and Methods considered in the present paper

shall be presented

Material and methods

The main contributions of the present paper can be split into two: a theoretical and an applied

one, hereby named the Hierarchical Portfolio Optimization Stacking Strategy (HPOSS). The

theoretical contribution relies on reinterpreting the stacking of surrogate models as the con-

struction of a portfolio of financial assets, indicating how this new understating can result in

novel stacking strategies. The applied contribution, on the other hand, is related to the propo-

sition of a new two-step methodological approach to the stacking problem based on well estab-

lished financial techniques. Such applied contribution shall be illustrated by a study case. Since

the theoretical contribution does not rely on any other concepts than the ones described in the

Introduction, the following subsections will focus on the tools needed to the develop the

HPOSS.

Methodological steps—HPOSS

The methodological steps presented in Fig 1 should be followed to apply the Hierarchical Port-

folio Optimization Stacking Strategy (HPOSS). In general, HPOSS considers two major steps:

filtering models worth stacking and calculating the weights for those models. It is, therefore, a
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stacking strategy that necessarily is preceded by a filtering step. Besides, it is understood that

many candidate models are considered to account for different analytical families.

From Fig 1, one needs to gather samples of the joint probability distribution of the inputs

and outputs. This can be achieved by a DoE. Then, a total of b surrogate models are calibrated

by using the DoE. From the calibration process, the samples of the leave-one-out residues are

obtained for each surrogate model, which are nothing but samples from the random variables

�i, for i = 1, . . ., b.

Surrogate modeling. Given that the main benefit of using surrogate models is to signifi-

cantly reduce the time needed to perform in-depth analyses of a particular problem of interest,

techniques that can produce predictions quickly after the surrogate has been trained are of spe-

cial interest [34]. In the present paper, to show the applicability of the HPOSS, two classes of

surrogates were considered: Machine Learning and Polynomial Chaos Expansion ones.

• Machine Learning Algorithms

We have picked a few of the most popular machine-learning techniques for our study.

Using the Python scikit-learn library, similarly to [65], the authors gathered some of the avail-

able regressor-type estimators by importing the method “all_estimators” from “sklearn.utils”

and then discarding some regressors which were not considered of interest. Such a pre-selec-

tion process was based on the authors’ previous experience calibrating the sklearn models,

especially considering the time each algorithm takes to perform the learning process. This

way, in order to enforce diversity, a total of forty algorithms gathered into ten model classes

were considered, namely [66]: ensemble (which try to enhance the overall generalizability and

robustness while compared to a single predictor by merging the forecasts of multiple predic-

tors generated using a particular learning method—‘AdaBoostRegressor’, ‘BaggingRegressor’,

‘ExtraTreesRegressor’, ‘GradientBoostingRegressor’, ‘HistGradientBoostingRegressor’, ‘Ran-

domForestRegressor’); linear_model (operate under the assumption that the desired output

will be a result of combining the input features in a linear manner—‘BayesianRidge’, ‘Elastic-

Net’, ‘ElasticNetCV’, ‘GammaRegressor’, ‘HuberRegressor’, ‘Lars’, ‘LarsCV’, ‘Lasso’, ‘Las-

soCV’, ‘LassoLars’, ‘LassoLarsCV’, ‘LassoLarsIC’, ‘LinearRegression’, ‘LinearSVR’,

‘OrthogonalMatchingPursuit’, ‘OrthogonalMatchingPursuitCV’, ‘PassiveAggressiveRegres-

sor’, ‘PoissonRegressor’, ‘QuantileRegressor’,‘RANSACRegressor’, ‘Ridge’, ‘RidgeCV’,

‘SGDRegressor’, ‘TweedieRegressor’); tree (acquire simple decision rules from the provided

input data to construct a model capable of predicting the target variable’s value—‘Decision-

TreeRegressor’, ‘ExtraTreeRegressor’); dummy (make predictions using uncomplicated rules,

serving as basic benchmarks for comparison with other regression models

Fig 1. Methodological steps.

https://doi.org/10.1371/journal.pone.0290331.g001
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—‘DummyRegressor’); gaussian_process (also known as kriging algorithms—‘GaussianPro-

cessRegressor’); neighbors (assign a numerical value to a given point by calculating the mean

(or other summarizing function) of the values from its closest neighbors—‘KNeighborsRegres-

sor’); kernel_ridge (combines ridge with the kernel trick—‘KernelRidge’); neural_network

(simple multi-layer perceptron regressor—‘MLPRegressor’); svm (support vector machine

based models—‘NuSVR’, ‘SVR’) and compose (meta-estimator to regress on a transformed

target—‘TransformedTargetRegressor’); For further details on each method, we refer the

reader to the key references cited in [66], and also the work of [34].

When dealing with a vast list of machine learning models, it becomes evident that hyper-

parameter tuning may not be imperative [67]. This is due to the fact that when weak predictors

are aggregated and combined, they possess the capability to produce robust estimates. By har-

nessing the collective knowledge of multiple models, even those with relatively modest individ-

ual predictive capabilities, the resultant ensemble is able to offset individual shortcomings and

attain more dependable and precise predictions. As a result, the emphasis transitions from

fine-tuning hyperparameters for individual models to the creation and combination of diverse

models, thereby enhancing the ensemble’s overall performance and capacity to generalize.

This is precisely the focus of the present paper.

• Polynomial Chaos Expansion

Many methods are available to generate the univariate polynomial basis for particular pdfs

fXi
ðxiÞ. One is the so-called three terms recurrence method, which is generated using Stieltjes

[68] and Golub-Welsch method [69]. This is a considerably stable method, but do not work on

dependent distributions. Other approaches include the one discussed in [36], known as the

Askey scheme. In the present paper, PCE were fitted to the data using the three terms recur-

rence method implemented in the chaospy [70] algorithm.

• Making predictions with surrogate models

When a candidate surrogate model is calibrated, one wants to perform inferences for new

input values. Point estimates are not the best alternative in this case since there are some errors

due to sampling and the modeling procedure itself, which must be accounted for during the

inferencing process.

If a given surrogate model is chosen, its analytical formulation is known and equal to r(.).
Let’s consider that the b̂ parameters have been obtained from a given set of training samples.

Then, it is possible to predict the expected value of the response variable given a new set of

inputs x0, as r(x0).

Normally, it is assumed that the relation between the calibrated surrogate model and the

output response is subjected to an additive zero-mean noise, which implies that the final esti-

mation of the expected value of the output is exclusively dependent on the function r(.) and on

the estimated parameters b̂. This is a point estimate which may be misleading if solely ana-

lyzed. Interval estimations bring much more information, especially in risk analysis assess-

ments, where the most extreme situation are sought.

It is possible, then, to consider the confidence interval of the expected value r(x0). In this

case, one is interested in predicting the mean response, the average response value for a given

input x0. To calculate such a confidence interval, one needs to account for the variance in b̂,

which may arise from the training sample sampling process.

On the other hand, if one is interested in predicting the specific output for a particular

input x0, then, to estimate the variance of such prediction, it is necessary to consider not only

the uncertainty about b̂, as in the case of the confidence of expectation interval but also the
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uncertainty related to our actual prediction. In this case, one is not interested in the mean

response (expected value) but in a specific future value.

Overall, the major difference between the confidence of expectation and prediction intervals

is that the former accounts for uncertainty in the sampling of the training samples, while the lat-

ter accounts for both this sampling issue as well as for the uncertainty of the model prediction

itself (i.e., considers the variability of the possible outputs around the predicted mean). In gen-

eral, prediction intervals are more suited for applications where one is not simply worried about

the mean response. Calculating the prediction interval can be achieved by a bootstrap procedure.

A non-parametric estimation technique called Bootstrap was developed by Efron [71, 72]

and enables one to calculate the confidence interval (in the statistical sense) for a given statistic

of interest. The Bootstrap method is a statistical inference technique that relies only on cur-

rently available data (sample). One of its main features is the method’s lack of dependence on

any consideration of the relevant random variables.

The Bootstrap technique can estimate the sampling distribution of a particular statistic (for

example, the sample’s mean and variance) by considering that the sample is representative of

the population from which the latter has been collected and that the observations are indepen-

dent and identically distributed.

Thus, to calculate the 1 − ι confidence level prediction interval at a given value of the input

value x0, one can use the following bootstrap routine (simplified from the one presented in [73]):

• From the training dataset {W1, W2, . . ., Wk}, draw a new sample fW∗
1
;W∗

2
; . . . ;W∗

kg of size k
with replacement. Each Wi (or W∗

i , by consequence) is a pair with an input variable xi (or x∗i )
and an output value yi (or y∗i ).

• Train the surrogate model r(.) with the dataset fW∗
1
;W∗

2
; . . . ;W∗

kg to obtain rj(.).

• Draw one element at random, ej,*, from the errors sample fej;∗1 ; e
j;∗
2 ; . . . ; ej;∗k g such that

ej;∗i ¼ y∗i � rjðx∗i Þ.

• Calculate the estimated output value as the sum rj(x0) + ej,*.

• Repeat B times the last four steps to obtain a bootstrap sample of outputs {r1(x0) + e1,*, r2(x0)

+ e2,*, . . ., rB(x0) + eB,*}.

• From the sample {r1(x0) + e1,*, r2(x0) + e2,*, . . ., rB(x0) + eB,*}, calculate the confidence inter-

val for the mean value for a 1 − ι confidence level.

After the surrogates have been trained, it is interesting to discuss further how to cluster the

candidate surrogate models, which is the topic of the next sub-subsection.

Clustering. Clustering candidate models corresponds to clustering their performances

during the prediction tasks. As indicated in the present paper, the performance of each model

will be assessed based on the random variables �i, whose samples are obtained as the leave-

one-out residues. Thus, studying how to group datasets according to a given clustering

hypothesis is important.

Applying a clustering algorithm to gather similar surrogate models makes it possible to

select m models worth stacking. The selected models are the ones that belong to the cluster

that contains the method with minimum observed generalization error (i.e., minimize Eq

(12)), which would be the chosen model in a winner-takes-all approach.

In the present paper, the DBHT is used to explore how candidate models can be clustered

according to their performance (generalization errors) and analytical similarity (Pearson, Ken-

dall’s τ and Spearman’s ρ correlations of leave-one-out residues). This allows one to filter, from a

possibly large set of candidate models, the ones who could bring better quality to the stacking
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strategy. This choice of similarity and distance metrics is based on the fact that, for the DBHT

algorithm, the similarity defines the bubbles (general structure of the graph), which are then hier-

archically organized by the distance metric (inter and intra structure of the clusters). By using the

generalization error similarity and choosing the cluster containing the minimum observed gener-

alization error, one chooses the models with lower observed errors. On the other hand, using the

Pearson correlation distance, the internal hierarchy of the bubbles is such that similar models

(same analytical capabilities) are clustered together (because their residues are highly correlated).

The python package Riskfolio-Lib [74] presents a numerical implementation of the DBHT

method, which shall be slightly modified (adapted to produce different plots) and used in the

present paper.

The procedure proposed in [75], where the ratio of densities is calculated based on the

ratios of their empirical cumulative distributions, is considered in the present paper to calcu-

late the distance in Eq (28). In short, the empirical cumulative distribution is built by combin-

ing simple Heaviside step functions and piece-wise linear approximations. Then, such

function is numerically differentiated using a finite difference approach, therefore obtaining

an estimate of each density function involved [75].

An alternative expression, which considers that the random variables involved are approxi-

mately Normal, can be obtained as [56]:

Dd;0ðVjjSÞ �
�
�
�
�
m2
v

s2
v

�
m2
s

s2
s

� log
ss

sv

� ��
�
�
� ð29Þ

where μs, σs and μv, σv are the means and standard deviations of the random variables S and V,

respectively. Then, the second crucial step is considered: a stacking strategy is applied to obtain

the weights wi, i = 1, . . ., m of the selected models.

Stacking. In the HPOSS context, the stacking strategy to be considered is the HPR finan-

cial approach. This approach is considered with the same distance metric used in the DBHT

algorithm, i.e., Pearson correlation distance. Such choice ensures that similar models cannot

dominate the weight distribution (avoid concentration), since the weights are calculated based

on the global and local hierarchy instead of single model performance. For example, if two

models are withing the same cluster, they will share a certain portion of total weight (ascribed

to the whole cluster) instead of dominating the weight distribution. This privileges analytical

diversity, as desired.

To assess the suitability of the HPOSS, in the study case, just two previously published

stacking strategies are explored, both because they have shown to be superior to other simpler

alternatives and because they explore the concept of generalization error minimization, which

is discussed under different premises in the present paper. The heuristic formulation proposed

by Goel et al. in [18] and the optimized weight factor of Acar and Rais-Rohani in [19] are the

known stacking strategies selected.

• Heuristic proposed by Goel et al.

The strategy of selecting weights proposed by Goel et al. [18] is formulated as follows:

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gerror;i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

ðyk � ĝ n;l;i;kÞ
2

s

Eavg ¼

P
iEi

m
;o < 1; b < 0

wi ¼
w∗

iP
iw∗

i

;w∗
i ¼ ðEi þ oEavgÞ

b

ð30Þ
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where m is the number of candidate models, yk is the true response at a given point xk, ĝ n;l;i;k is

the prediction from the ith surrogate model calibrated from all the DoE except the data pair

(xk, yk) and N is the size of the DoE. The parameters ω and β should be specified beforehand.

For instance, ω = 0.05 and β = −1 is used in the work of [18]. A study of the effect of those

parameters has also been performed [18].

• Optimization problem proposed by Acar & Rais-Rohani

The weight factors are here solutions for the minimization of a global error. The influence

of the error metric choice is studied in [76]. In their original paper, Acar & Rais-Rohani [19]

selected the generalized mean square error concerning the ensemble of models, GMSEĝ stk
. This

metric is defined by:

GMSEĝ stk
¼

1

N

XN

k¼1

ðyk � ĝ stk;kÞ
2

ð31Þ

where yk is the true response at a given point xk and ĝ stk;k is the value predicted by using a

stacked model calibrated from all the DoE points except the data pair (xk, yk). The weight fac-

tors are the solutions to the following optimization problem:

min
w

GMSEĝ stk

s:t:
Xm

i¼1

wi ¼ 1
ð32Þ

By changing the optimization problem in Eq (32) into a matrix form, Viana et al. [13]

obtained an explicit solution. On the other hand, their solution is based on building a

matrix based on the average cross-errors of each model obtained by leave-one-out cross-

validation.

The problem in Eq (32) can be solved as it is, in an unbounded manner, and also can be

changed to a bounded alternative, where the weights are considered to lie within the (0, 1)

interval. Both approaches (bounded and unbounded) will be considered in the present

paper.

The stacking strategies presented by Goel et al. and by Acar & Rais-Rohani will be used as

benchmarks to test the capabilities of the proposed new stacking strategy. Other novel heuristic

approaches will be also proposed in the present paper.

In summary, for the HPOSS, low generalization error is obtained by using the DBHT algo-

rithm with a generalization error similarity. High model diversity is achieved by combining

the DBHT algorithm and the HPR stacking strategy, both with the Pearson correlation dis-

tance metric. One could argue that it would be possible to directly calculate the weights using

the HPR rationale on the global/local hierarchy obtained by the DBHT algorithm. This would

be possible, but in the present paper, we applied such algorithms sequentially (instead of in a

nested manner). To assess the suitability of the HPOSS, a few new general stacking alternatives

that encompass statistical ideas will be proposed.

Results and discussions

As mentioned earlier, the present paper encompasses two main contributions: a theoretical

and an applied one. Thus, the results and discussions will be presented according to these two

categories.
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Theoretical contribution

As indicated, for a loss represented by the squared difference, Rloo can be interpreted as the

generalization error and, therefore, as the second central moment of the random variable �.

This way, it is possible to consider that the individual residues calculated by leave-one-out pro-

cedures are samples from �, which are squared and expressed as their mean by Gerror following

Eq (8).

From this point on, it is considered that the leave-one-out residues, given as yi − f i(xi) are

samples from the random variable �i.

The main purpose of the present paper is to propose a stacking methodology based solely

on assessing the behavior of the random variables �. In this case, for each model to be stacked,

there will be a specific random variable �i which expresses the residues from its leave-one-out

procedure. A robust and accurate stacking strategy is proposed by linearly combining such

variables.

By considering a stacking of candidate models as in Eq (13), by assuming that the weights

of the models are wi such that
Pm

i¼1
wi ¼ 1 (as suggested by some authors to have an unbiased

response prediction [12]), the following theorem holds:

Theorem 1. The generalization error (Gstacked) of the stacked model ĝ stkðxÞ is bounded by the
moments of the random variable

Pm
i¼1

wi∊i as:

Var
Xm

i¼1

wi�i

" #

þ

�

EX

Xm

i¼1

wi�i

" #�2

¼ Gstacked ð33Þ

Proof. From Eq (9):

EX

�
Xm

i¼1

wi�i

�2
" #

¼ EX

�
Xm

i¼1

wiðf0ðxÞ � ĝ n;l;iðxÞÞ
�2

" #

¼ EX

�
Xm

i¼1

wif0ðxÞ �
Xm

i¼1

wiĝ n;l;iðxÞ
�2

" #

¼ EX

�
Xm

i¼1

wif0ðxÞ
�2

" #

þ EX

�
Xm

i¼1

wiĝ n;l;iðxÞ
�2

" #

�

2EX

�
Xm

i¼1

wif0ðxÞ
��
Xm

i¼1

wiĝ n;l;iðxÞ
�" #

ð34Þ

In the case, one considers the joint estimation of the functions ĝ n;l;iðxÞ, it can be stated that

wif0(x) are the same realizations of the random variable f0(x) times a constant wi. This leads to

PLOS ONE A hierarchical portfolio opt. stacking strategy to reduce the gen. error of ensembles of models

PLOS ONE | https://doi.org/10.1371/journal.pone.0290331 August 31, 2023 18 / 43

https://doi.org/10.1371/journal.pone.0290331


the fact that
Pm

i¼1
wi f0ðxÞ ¼ f0ðxÞ since

Pm
i¼1

wi ¼ 1. Thus,

EX

�
Xm

i¼1

wi�i

�2
" #

¼ EX½ðf0ðxÞÞ
2
� þ EX

�
Xm

i¼1

wiĝ n;l;iðxÞ
�2

" #

�

2EX ðf0ðxÞÞ
�
Xm

i¼1

wiĝ n;l;iðxÞ
�" #

¼ EX

�

f0ðxÞ �
Xm

i¼1

wiĝ n;l;iðxÞ
�2

" #

¼ Gstacked

ð35Þ

where the last line of Eq (35) follows from the combination of Eqs (8) and (13).

Another way to see that, in fact, wi f0(x) are the same realizations of the random variable

f0(x) times a constant is to notice that f0ðxÞ ¼ EY ½YjX�. Thus, as soon as the input variables are

sampled, a specific realization of X is known and, therefore, EY ½YjX� is no longer a random

variable, but a simple realization.

By considering Eq (35) and using the definition of the Variance of a random variable Z = h
(X) as VarðZÞ ¼ EX½Z2� � ðEX½Z�Þ

2
, Eq (33) is obtained.

It can be seen from Eq (33) that studying how the random variable
Pm

i¼1
wi∊i behaves brings

significant information on the capabilities of the stacking strategy. It is possible to notice that

this random variable will be a proxy for the actual behavior of the stacked model since mini-

mizing the generalization error implies minimizing both the variance and the expected value

of
Pm

i¼1
wi∊i. Another important conclusion can be drawn from the following Theorem:

Theorem 2. Minimizing the expected value of
Pm

i¼1
wi∊i will minimize the expected value of

the difference between the best possible regressor f0(x) and the prediction of the stack of models
since:

EX

Xm

i¼1

wi�i

" #

¼ EX f0ðxÞ �
Xm

i¼1

wiĝ l;n;iðxÞ

" #

ð36Þ

Proof. From Eq (9):

EX

Xm

i¼1

wi�i

" #

¼ EX

Xm

i¼1

wiðf0ðxÞ � ĝ n;l;iðxÞÞ

" #

ð37Þ

Thus, by noticing that in a joint estimation of the functions ĝ n;l;iðxÞ the values of wi f0(x) are

the same realizations of the random variable f0(x) times a constant, Eq (36) follows.

Both Theorems 1 and 2 offer a very attractive alternative to define the weights of each can-

didate model for the stacking procedure. Also, the literature indicates that the best results are

obtained when the stacking strategy can combine the confidence (and not just the predictions)

of the lower-level models [77]. Studying not only point estimates, but the random variables
Pm

i¼1
wi∊i does precisely that: combines the predictions, represented by EX½

Pm
i¼1

wi∊i�, to the

confidence of such predictions, represented by Var½
Pm

i¼1
wi∊i�.

Another way of interpreting Eq (33) is to acknowledge that it precisely presents the bias-

variance trade-off dilemma one encounters while calibrating any model [78]. The bias is repre-

sented by EX½
Pm

i¼1
wi∊i�, and the variance, by Var½

Pm
i¼1

wi∊i�.

Direct optimization stacking approach. In our interpretation, each of the m candidate

models represents a risky asset whose returns are given as �i, for i = 1, . . ., m. Therefore, we
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aim to find the weights wi, for i = 1, . . ., m, such that the generalization error of the stacked

model
Pm

i¼1
wi∊i is minimized. In the present sub-subsection novel analytical and numerical

solutions are presented for some optimization stacking approaches. Besides, novel heuristic

approaches are described. Overall, using all theses alternatives is of interest to show how the

adequacy and robustness of the methodology hereby proposed.

• Unbounded weights

Theorem 1 indicates that this problem is reduced to minimizing the sum of the variance

and the squared expected value of the random variable
Pm

i¼1
wi∊i. Thus, let w be a m × 1 col-

umn vector whose components are the weights of each model. Also, let μ be a m × 1 column

vector whose components are the expected values of each candidate model. By denoting S as

the covariance matrix of the random variables �i, i = 1, . . ., m, then, the minimization problem

can be represented as:

min
w

wTSw þ ðwTmÞ
2

s:t: wTe ¼ 1
ð38Þ

where e is a m × 1 column vector whose entries are all equal to one.

Let us consider that the weights w minimize the problem in Eq (38) are wP, such that

mP ¼ wT
Pm. Thus, this same vector of weights will also minimize the following problem:

min
w

wTSw

s:t: wTm ¼ mP

s:t: wTe ¼ 1

ð39Þ

On the other hand, MPT brings an interesting insight into the optimization problem pre-

sented in Eq (39). This results in the determination of the values of weights of portfolios that

belong to the so-called Efficient Frontier of assets selection.

The optimization problem in Eq (39) can be analytically solved by using Lagrange multipli-

ers [79], leading to the variance of the portfolio s2
P being expressed in terms of μP as:

s2
P ¼

1

l4

l1m
2

P � 2l2mP þ l3

� �
ð40Þ

where it is assumed that S is non-singular such that its inverse, S−1, exists and:

l1 ¼ eTS� 1e

l2 ¼ eTS� 1m

l3 ¼ m
TS� 1m

l4 ¼ l3l1 � l
2

2

ð41Þ

Now, the next step is to combine Eqs (33) and (40) to solve the optimization problem in Eq

(38). Thus:

1

l4

l1m
2

P � 2l2mP þ l3

� �
þ m2

P ¼ Gstacked ð42Þ
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To obtain real-valued solutions to the quadratic Eq (42), it suffices to observe that:

4l
2

2

l
2

4

� 4
l1 þ l4

l4

� �

l3 � Gstackedð Þ � 0 ð43Þ

which leads to:

Gstacked � l3 �
l

2

2

l4ðl1 þ l4Þ
ð44Þ

Thus, the minimum generalization error of the stacked model is obtained when Eq (44) is

equality. Also, for this specific value, the generalization error circle only touches the Efficient

Frontier once, precisely at the point where:

mP ¼
l2

l1 þ l4

s2
P ¼ l3 �

l
2

2
ðl1 þ 2l4Þ

l4ðl1 þ l4Þ
2

ð45Þ

From the values obtained in Eq (45), it is possible to explicitly obtain the m × 1 vector of

optimum weights wopt by defining a m × 2 matrix K = [μ, e], a 2 × 1 vector ω = [μP, 1]T, a 2 × 2

matrix A = KTS−1K and:

wopt ¼ S� 1KA� 1o ð46Þ

It is worth noticing that the optimization problem in Eq (38) is a portfolio management

reinterpretation of the optimization problem presented in Eq (32) and explored in [19]. There-

fore, the solution in Eq (46) is nothing but an explicit exact solution to Eq (32), given differ-

ently and more directly than the one presented in [13].

• Graphical interpretation

The graphical interpretation of the present optimization solution is presented in Fig 2. Such

interpretation directly results from the mathematical rationale behind the formulas presented.

First and foremost, Eqs (38) and (39) indicate that minimizing the generalization error of

the stacked model implies that the selected portfolio belongs to the efficient frontier. Secondly,

Theorem 1 states that the generalization error is nothing but the squared radius of a circle

whose origin is at (0, 0) and touches the point (σP, μP), where μP and σP are the bias and

squared root variance of the stacked model generalization error random variable.

This way, finding the portfolio with the least generalization error translates into finding the

intersection of the smallest-radius circle centered at (0, 0) which touches the efficient frontier

line. It is interesting to notice from Fig 2 that the winner-takes-all approach, where the model

with smallest generalization error is chosen, can provide considerably higher generalization

errors when compared to a stacked model.

Optimization with positive-defined weights. An important observation of Breiman [39]

is that, in general, imposing that the weights are non-negative, i.e., wi� 0, 8i, provides predic-

tors which, almost always, have lower prediction error than the single predictor having lowest

cross-validation error.

Also, from a Bayesian perspective, Bayesian models can be weighted by their marginal like-

lihood. This is known as Bayesian Model Averaging [80–82]. This rationale could also be used

for surrogate models, as described in [12]. This implies that the weights represent probabilities,

so they should be non-negative. The marginal likelihood is extremely sensitive to the
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specification of the prior, whereas parameter estimation is not, and computing the marginal

likelihood is typically a difficult process, so while this is theoretically appealing, it is trouble-

some in practice [83]. Therefore, this Bayesian technique shall not be explored in the present

paper.

The new optimization problem would be:

min
w

wTSw þ ðwTmÞ
2

s:t: wTe ¼ 1 ð47Þ

s:t: wi � 0;8i ð48Þ

Such a problem cannot be directly solved using Lagrange’s multipliers. Markowitz created

the Critical Line Algorithm (CLA), a quadratic optimization technique for situations involving

inequality-constrained portfolio optimization. This algorithm stands out because it cleverly

gets around the Karush-Kuhn-Tucker requirements and ensures that the precise answer is

obtained after a known amount of iterations [42]. This algorithm’s description and open-

source implementation can be found in the literature [45].

The optimization procedure to solve Eq (47) consists of two steps: first, the minimum vari-

ance portfolio with bounded weights is obtained using the CLA algorithm. Then, such weights

are used as initial values for the optimization procedure in Eq (47), which can be solved using

the Sequential Least Squares Programming (SLSQP) algorithm of scipy [84]. This two-step

approach is important to make the optimization algorithm look for weights around the tip of

the inequality-constrained Markowitz frontier. If the bias of the minimum variance portfolio

Fig 2. Markowitz frontier, minimum generalization error asset, and portfolio.

https://doi.org/10.1371/journal.pone.0290331.g002
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is small, there is a good chance that this will be the portfolio which also minimizes the problem

in Eq (47).

A special case to Eq (47) happens when the optimization procedure considers the constraint

that the mean value of
Pm

i¼1
wi∊i is zero. This problem is hereby called ZeroMinStdWeights

and will be explored in the applications section.

Novel heuristic approaches. As alternative optimization approaches, some heuristic pro-

cedures are introduced in the present paper. The rationale behind these approaches is to

enforce some sort of regularization during the optimization process, which would provide

more robust solutions.

Overall, the basic principle hereby considered is that residues of errors of the portfolio of

models, obtained as
Pm

i¼1
wi∊i, will be approximately distributed as a Normal random variable

with zero mean and standard deviation given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð

Pm
i¼1

wi∊iÞ
p

. This can also be under-

stood as an approximation supported by Lindeberg’s Central Limit Theorem, which only

requires that the random variables being linearly combined have finite variance, satisfy Linde-

berg’s condition, and be independent. Lindeberg’s condition indicates that none of the ran-

dom variables have a disproportional relevance to the calculation of the variance of the

portfolio [85].

This way, the optimization problem to be solved is:

min
w

Uðw; �1; . . . ; �mÞ

s:t: wTe ¼ 1 ð49Þ

s:t: wi � 0;8i ð50Þ

where U(w, �1, . . ., �m) is a heuristic utility function on the weights and the residues. Several of

those utility functions are discussed subsequently.

• MinADWeights

For this case, the utility function is:

Uðw; �1; . . . ; �mÞ ¼
2sstackedADstacked

sstacked þ ADstacked
ð51Þ

which is nothing but the harmonic mean of the standard deviation of the portfolio (σstacked)

and the modified Anderson-Darling statistic [86] calculated for the normalized portfolio resi-

dues (ADstacked). This modified statistic considers that both mean and variance are unknown.

Mathematically, both the mean of the portfolio and its variance are estimated from the sam-

pled residues, T ¼
Pm

i¼1
wi∊i=sstacked, F(z) is the cdf of a standard normal random variable

and:

ADstacked ¼ � n �
1

n

Xn

i¼1

ð2i � 1ÞðlnFðTiÞ þ lnð1 � FðTnþ1� iÞÞÞ

 !

1þ
4

n
�

25

n2

� �

ð52Þ

• NormWeights

In this case, the utility function is simply U(w, �1, . . ., �m) = σstacked, where σstacked has been

obtained as maximum likelihood estimate for the variance of a Normal random variable with

zero-mean fitted to
Pm

i¼1
wi∊i.
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• MaxLWeights

In this case, the utility function is the negative log-likelihood of the samples from
Pm

i¼1
wi∊i

being distributed as a Normal random variable with zero-mean and standard deviation σstacked,

which is estimated from the samples of
Pm

i¼1
wi∊i.

• MinKLWeights

In this case, the utility function is the KL divergence between two normal random variables

P and Q, where P has mean zero and standard deviation σstacked and Q has mean μstacked and

standard deviation σstacked. All these moments are estimated from the samples of
Pm

i¼1
wi∊i.

HPOSS and its application in a study case

A study case shall be conducted to show how the new HPOSS methodology performs com-

pared to other alternatives. Thus, consider the four-variable I-beam problem taken from [87].

The critical response for this problem is the maximum bending stress zmax developed in a sim-

ply supported beam with 1 m of length after a point load P is applied at its center, which is cal-

culated as:

zmax ¼
Pd1

4I
; I ¼

1

12
d2d

3

1
� ðd2 � d3Þðd1 � 2d4Þ

3
� �

ð53Þ

where each di is a dimensional design variable such that 0.1m� d1, d2� 0.8m and 0.009m�
d3, d4� 0.05m, as specified in [87] and presented in Fig 3.

In the study case, P = 1000 N is assumed to be deterministic, and the dimensional variables

are all Beta random variables in the design ranges specified. To test the robustness of the tech-

niques involved, five different fundamental beta random variables were chosen, as presented

in Fig 4.

For each type of Beta random variable presented in Fig 4, proper linear scaling is performed

to adjust the support from (0, 1) to the corresponding physical limits mentioned. All these

types were used to demonstrate how the stacking alternatives behave when the sampled points

are mainly located to the left (Beta(2,5)), the center (Beta(2,2)), the right (Beta(5,2)) and both

ends (Beta(0.5,0.5)) of the domain as well as uniformly distributed over it (Beta(1,1)).

To calibrate the surrogate models, a small dataset of 80 samples of zmax is obtained by using

the Latin Hypercube sampling algorithm for the input variables, which was implemented

using the chaospy python package [70]. The DoE was generated as if the input random vari-

ables were Uniform in their respective ranges, mainly to provide a space-filling dataset. All

sub-regions of the random variable support are represented in the datasets. The dataset can be

found in [88], where a .h5 file is present. The file contains a dataset called “Calibrations_LHS”,

which consists of a 80 × 5 numpy array of float numbers corresponding to d1(m), d2(m),

d3(m), d4(m) and zmax(Pa), where di, i = 1, . . ., 4 are dimensions (in meters) of the I-beam and

zmax is the maximum bending stress (in Pascals) developed in such beam.

The DoE size of 80 samples was chosen to represent a small sample problem, where obtain-

ing newer samples of the unknown response function is unfeasible. Increasing the sample size

would not impact the general results and discussions. On the other hand, it is possible that the

selected models would be different, which is expected because the behavior captured with

more data is different (one gets to see more of the unknown function). This way, the DoE size

is just a pre-definition that does not impact on the application of the methodology hereby

proposed.

Model calibration. From all the possible regressors in scikit-learn [66], the ones cited in

the Materials and Methods section were considered. As discussed, the algorithm
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‘GaussianProcessRegressor’ is a kriging implementation, and no manual hyperparameter tun-

ing was performed for any of the algorithms.

Polynomial Chaos Expansions were fitted to the data using the chaospy [70] algorithm. In

this case, a point collocation fitting approach was considered. Seven types of multivariate linear

regression models, available in scikit-learn, were used to obtain the polynomial coefficients to

solve the least-squares problem (find the coefficients of the PCE), namely: “least squares”,

“elastic net”, “lasso”, “lasso lars”, “lars”,“orthogonal matching pursuit” and “ridge”. The maxi-

mum order of the polynomials considered was such that the number of unknown coefficients

did not exceed the number of training samples. In the case with four input variables and 80

training samples, at most, polynomials of order 4 were fitted. Besides, three base random vari-

ables were selected for the expansions: Uniforms in the range (−1, 1), standard Normals, and

the Uniforms in the physical ranges mentioned (hereby referred to as Real expansion, in the

Fig 3. Dimensional variables of I-beam [87].

https://doi.org/10.1371/journal.pone.0290331.g003
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sense of the real random variable). For all the three types of variables, the three terms recur-

rence method implemented in chaospy was used. It is worth noticing that classical Legendre

and Hermite polynomials were retrieved for Uniforms in the range (−1, 1) and standard

Normals.

In all the cases, the naming convention for the PCE expansions was: PCE − XXX YYY − Z,

where XXX denotes which type of random variable was considered (Unif = Uniform (−1, 1),

Norm = standard Normal and Real = shifted Uniforms in the physical ranges); YYY denotes

which algorithm was used to perform the multi-linear least squares regression and Z is the

polynomial expansion order.

For the machine learning models, it is important to highlight that scaling of the input values

was performed by using the function MinMaxScaler of the scikit-learn package, which scales

and translates each feature individually such that it is within a given range on the training set

(in our case, between zero and one).

Overall, a total of 124 models were trained using the dataset described: 40 Machine Learn-

ing models and 84 PCE-based models (3 types of random variables considered fitted using 7

least square algorithms and up to fourth order expansions, i.e., 3 × 7 × 4 = 84). Among those,

99 models could be fitted without convergence and other numerical issues.

Model selection. For the DBHT algorithm, the similarity measure chosen was the general-

ization error similarity. The clusters obtained from running the DBHT algorithm with differ-

ent distance metrics (Pearson, Kendall’ τ and Spearman’s ρ correlation distances, approximate

ratio correlation distance and approximate normal correlation distance) were also evaluated,

and the clusters obtained for the Pearson, Kendall’ τ and Spearman’s ρ correlation distances

Fig 4. Five types of Beta functions considered.

https://doi.org/10.1371/journal.pone.0290331.g004
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are presented in Figs 5–7. The “PCE Real Lasso Lars-4” model is highlighted since this would

be chosen based on the minimum observed generalization error. The selected cluster is the

one that contains this model. It is important to highlight that the optimal number of clusters

was established by using the two-order difference to gap statistic [89] implemented in the

python package Riskfolio-Lib [74].

The analysis of Figs 5–7 indicate that the DBHT algorithm with both Kendall’ τ and Spear-

man’s ρ correlation distance metrics provided the same clustering result (same models clus-

tered together with the “PCE Real Lasso Lars-4” model). Moreover, with the use of Pearson

correlation distance metric, the DBHT algorithm provided a bigger cluster which contains not

only the models clustered by DBHT using the other distance metrics, but also extra models.

This indicates that if the Pearson correlation is used, a looser clustering process is carried out,

which ends up including more models in the final cluster.

Fig 5. Radial dendrogram obtained from DBHT algorithm with Pearson correlation distance and generalization error similarity.

https://doi.org/10.1371/journal.pone.0290331.g005
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In the present paper, we seek to use the DBHT algorithm to filter among a large number of

candidate models. Therefore, while we intend to eliminate a good share of uncorrelated mod-

els, we still want to have a good number of algorithms in the final cluster. Therefore, we chose

the Pearson correlation distance metric to carry out the study case. Depending on the specific

application envisioned, the reader may, on the other hand, choose a tighter clustering scheme,

by selecting either Kendall’ τ or Spearman’s ρ correlation distance metrics together with the

DBHT algorithm.

Fig 6. Radial dendrogram obtained from DBHT algorithm with Kendall’ τ correlation distance and generalization error similarity.

https://doi.org/10.1371/journal.pone.0290331.g006
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By analyzing Fig 5, the combination of the Pearson correlation distance with the generaliza-

tion error similarity provides a good combination of low generalization errors and highly cor-

related residue random variables. This can be visualized by noticing that, on average, the

bubbles formed by the DBHT algorithm gather low generalization error models (similarity

defines the bubbles and we chose the cluster which contains the model with minimum general-

ization error) and the internal hierarchy is defined by models with similar analytical capabili-

ties (highly correlated leave-one-out residues). Similar analytical capabilities can be confirmed

by the fact that, in general, the clusters obtained gathered similar types of PCEs and linear

regression methods.

Fig 7. Radial dendrogram obtained from DBHT algorithm with Spearman’s ρ correlation distance and generalization error similarity.

https://doi.org/10.1371/journal.pone.0290331.g007
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Fig 8 presents the selected models in the bias-square root of variance space to better visual-

ize how each combination of metrics leads to different clustering scenarios. The full black dot

in Fig 8 represents the “PCE Real Lasso Lars-4” model.

The legend in Fig 8 represents the hypothesis test approaches (Cucconi and KS) as well as

the DBHT algorithm with the generalization error similarity (SimGenErro) and different dis-

tance metrics: generalization error distance (GenErro), Pearson correlation distance (Pearson),

approximate ratio distance (RatioApp) and Normal approximation ratio distance (KL).

By considering the DBHT algorithm with Pearson correlation distance and generalization

error similarity, from the 99 fitted models, a subgroup of 23 was selected to be stacked. This

represents a reduction of about 77% in the total number of models, representing a good filter-

ing scheme which still preserves diversity.

Weights calculation. A total of eleven methodologies were considered to calculate the

stacking weights. All the optimization procedures were solved using the Sequential Least

Squares Programming (SLSQP) algorithm of scipy [84]. Fig 9 presents the bounded problems’

resulting weights. For unbounded procedures, the weights ranged from -30000 to 30000 and

are not represented in Fig 9 due to scale issues.

Fig 8. Model selection for each clustering algorithm considered. For color blindness accessibility, the legend’s first(second) row describes the first

(second) column of the grid.

https://doi.org/10.1371/journal.pone.0290331.g008

PLOS ONE A hierarchical portfolio opt. stacking strategy to reduce the gen. error of ensembles of models

PLOS ONE | https://doi.org/10.1371/journal.pone.0290331 August 31, 2023 30 / 43

https://doi.org/10.1371/journal.pone.0290331.g008
https://doi.org/10.1371/journal.pone.0290331


The analysis of Fig 9 reveals that except from the “MinADWeights”, “MaxLWeights”,

“HPRWeights”, “IVWeights” and “RobustWeights—1”, all the other methodologies tended to

assign comparable weights to all the candidate models.

In special, Fig 9 shows that “MinADWeights” present an unbalanced scheme where too

much importance was given to the “PCE Real lasso lars-2” model. This illustrates how a pure

optimization approach may lead to less interpretable weights. Fig 10, on the other hand, pres-

ents a heatmap for the methods whose maximum weights were lower than 0.3.

Figs 9 and 10 also indicate that the novel heuristic methods “NormWeights”, “ZeroMinStd-

Weights”, and “AcarOptWeights” all resulted into the simplest weighting scheme: equal

weights for all the models. This indicates that the convergence of the optimization problem

was either problematic (since the initial weights used as first guesses were precisely equal ones)

or that the equal-weight portfolio is the optimal one. Optimizing the “AcarOptWeights” by

Fig 9. Results for all bounded weights stacking strategies.

https://doi.org/10.1371/journal.pone.0290331.g009
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coupling it to the CLA algorithm of Markowitz did not provide convergent results when using

the CLA algorithm presented in [45]. It is possible that the highly correlated and, sometimes,

linearly dependent �i prevented convergence. Overall, optimization approaches struggled to

converge to meaningful results. We chose to keep such results to illustrate how pure optimiza-

tion techniques can be problematic and to indicate that direct approaches, such as the HPR

strategy, are of great interest in this matter, as the “optimal” solution is deterministic and

explicit. In other words, the HPR strategy can always provide weights, regardless of a possible

ill-conditioning of the covariance matrix.

On the other hand, “GoelWeights”, “IVWeights” and “MaxLWeights” gave too much credit

to the model with the least observed generalization error. Also, the “RobustWeights—1” pro-

vided an interesting result, where several models were almost discarded from the analysis as

low weights components. The type of robust optimization hereby considered privileges lower

bias at the cost of higher variance. Besides, the “HPRWeights” were such that two ordinary

algorithms (“NuSVR” and “PCE Norm least squares—2”) were given considerably larger

weights, while some other algorithms were almost disregarded with comparably lower

weights.

Fig 10. Heatmap of weights.

https://doi.org/10.1371/journal.pone.0290331.g010
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Probability of failure calculations. The plots in Figs 11–15 present the prediction inter-

vals for the probabilities of failure calculated for each type of input random variable and the

corresponding performance of the individual algorithms and stacking strategies. The predic-

tion interval is defined by its boundaries [pint,upper, pint,lower] and was obtained as the 95% bias-

corrected and accelerated bootstrap confidence interval (BCa) of the mean probability of fail-

ure after a bootstrapping prediction assessment for 300 times. This number of bootstrap reali-

zations was considered adequate after numerical experiments. The bootstrap confidence

intervals for the prediction values were obtained by applying the bootstrap method from scipy.
stats Python package [84].

To properly compare the plots, it was considered that a failure happens whenever zmax>

z0.1 = 786260.04 Pa, where P(ι> z0.1) = 0.1 and ι is the random realization of the exact model.

Fig 11. Prediction intervals of probabilities of failure considering that the input variables are linearly scaled Beta(2,5), i.e., the center of mass of

the distribution closer to the left end of the interval, according to their respective physical ranges.

https://doi.org/10.1371/journal.pone.0290331.g011
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Also, whenever a model or stacking strategy provided a prediction interval that contained the

correct value (which was chosen as 0.1), it was colored green.

To assess how each algorithm and staking strategy performed, the following metric was

defined to quantify how far the true probability of failure value was from the confidence inter-

val. Thus, let υ be the performance metric defined as:

u ¼ ua þ ub; ð54Þ

where υa = 0 if the prediction interval contains the correct probability of failure and υa = min(|

pint,upper − 0.1|, |pint,lower − 0.1|) otherwise. Also, υb = pint,upper − pint,lower.
In other words, υa quantifies how far the actual probability of failure is from the predicted

interval by either checking if this value is inside the gap (thus υa = 0) or which is the smallest

distance from the correct value to the boundaries of the confidence interval. Also, υb quantifies

Fig 12. Prediction intervals of probabilities of failure considering that the input variables are linearly scaled Beta(2,2), i.e., the center of mass of

the distribution at the center of the interval, according to their respective physical ranges.

https://doi.org/10.1371/journal.pone.0290331.g012
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how wide is the confidence interval. Overall, the best models would provide prediction inter-

vals that contained the actual value, and the gap itself should be narrow such that lower values

of υ indicate better model performance.

Fig 16 shows that the HPR stacking strategy has the lowest mean performance metric

among all the stacking strategies compared. However, this indicates that the HPR strategy per-

forms well even when the random input variables have completely unseen probability distribu-

tions, indicating its performance can be considered superior to other methods.

In general, the lower the value of υ, the better the model. On the other hand, stacking is the

best possible model choice, not necessarily the result with the lowest error metric. This comes

from the fact that, usually, it is not possible to assess which is the individual model which pres-

ents the lowest metric (in our example, the PCE Norm ridge-3) because we do not know the

function we are trying to approximate but only a few samples from its evaluation. Therefore,

Fig 13. Prediction intervals of probabilities of failure considering that the input variables are linearly scaled Beta(5,2), i.e., the center of mass of

the distribution closer to the right end of the interval, according to their respective physical ranges.

https://doi.org/10.1371/journal.pone.0290331.g013
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stacking becomes the best possible choice to provide an estimate in this context, as we don’t

know how well each model will mimic the objective function. Besides, it can be seen that the

best overall model (which has the lowest error metric) does not even have the lowest LOO gen-

eralization error. There is, likewise, no hint that allows us to choose it. In other words, it is

impossible to pin down the best model beforehand, so stacking is necessary.

The study case carried out revealed some interesting aspects of the stacking problem, which

follow:

• Intervals lengths:

Consistently, the prediction intervals are narrower for an ensemble of models than for sin-

gle models. This is a known and expected result, as stacking models can be viewed as a variance

reduction technique.

• PCE expansion quality:

Fig 14. Prediction intervals of probabilities of failure considering that the input variables are linearly scaled Beta(0.5,0.5), i.e., two centers of

mass for the distribution located at both the right and left ends of the interval, according to their respective physical ranges.

https://doi.org/10.1371/journal.pone.0290331.g014
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Overall, custom PCE expansions for the same input random variables (even if they are

slight modifications of traditional random variables with known closed-form PCEs) consis-

tently perform worse than the conventional expansions (Uniforms, Normals).

Stacking strategies that ended up assigning higher weights to these custom (“Real”) expansion

models got a severe performance hit. Also, except for the “MinADWeights” ensemble method,

all individual custom (“Real”) expansions performed worse than the ensemble of models.

• Overall performance of surrogate models:

Very few algorithms provided prediction intervals that contained the actual probability of

failure value. If a winner-takes-all approach had been considered, the algorithm with the low-

est observed generalization error (PCE-Real lasso lars-4) would have been selected. On the

other hand, such a model had a poor out-of-sample performance overall, which highlights why

using ensembles is a good idea.

• Overall performance of stacking strategies:

Fig 15. Prediction intervals of probabilities of failure considering that the input variables are linearly scaled Beta(1,1), i.e., uniform distribution

over the interval, according to their respective physical ranges.

https://doi.org/10.1371/journal.pone.0290331.g015
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Traditional optimization techniques, such as the unconstrained one by Acar & Rais-Rohani

[19], did not perform well. The unbounded nature of the weights resulted in a volatile weight-

ing scheme. Even the constrained version and the heuristic approach proposed by Goel et al.

[18] did not outperform the proposed HPR alternative. Overall, stacking choices that involved

optimization either did not converge or converged to a meaningless set of weights due to the

correlation and, sometimes, linear dependence between the �i random variables samples.

Conclusions

The present paper proposes a novel stacking strategy for surrogate models. Reinterpreting

stacking problems as portfolio management and optimization situations allows several alterna-

tives to combine individual models better.

Fig 16. Comparison of mean performance metric for probabilities of failure calculations considering all the input variables.

https://doi.org/10.1371/journal.pone.0290331.g016
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A two-step methodology is proposed: first, models are calibrated, and, based on their leave-

one-out residues, a subset of surrogates is chosen to be stacked. To illustrate the application of

the methodology, a study case was performed and revealed that, among 99 fitted models, the

Directed Bubble Hierarchical Tree—DBHT—algorithm (with a generalization error similarity

matrix and a Pearson correlation distance matrix) was able to cluster a small subgroup of only

23 models that were worth staking. This represents a reduction of about 77% in the total num-

ber of models, representing a good filtering scheme which still preserved analytical diversity.

By considering a probability of failure example, a custom metric was defined to quantify

how far the true probability of failure value was from the confidence interval provided by each

stacking alternative. This metric revealed that the best linear weighting scheme was the Hierar-

chical Risk Parity method (HPR), despite the relative quality of the other stacking strategies

proposed in the present paper.

The “RobustWeights—1” method could benefit from changing the uncertainty set defini-

tion and distribution. However, the regularization characteristics of this type of approach

seem promising and worth studying in subsequent papers.

HPR algorithm tends to balance weights according to how similar the analytical structure

of the methods is. In this regard, the hierarchical nature of the process assures that surrogates

in the same hierarchical branch receive equal weights, increasing model diversity and avoiding

assigning higher weights to a single specific class of surrogates.
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42. López de Prado M. Building Diversified Portfolios that Outperform Out of Sample. The Journal of Portfo-

lio Management. 2016; 42(4):59–69. https://doi.org/10.3905/jpm.2016.42.4.059

43. Mirete-Ferrer PM, Garcia-Garcia A, Baixauli-Soler JS, Prats MA. A Review on Machine Learning for

Asset Management. Risks. 2022; 10(4):84. https://doi.org/10.3390/risks10040084

44. Michaud R, Michaud R. Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization

and Asset Allocation 2nd Edition. Oxford University Press; 2008.
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